Tools for the generation of sanitation systems considering novel technology options and for the quantification of nutrient, water, and total solid balances at the scale of an urban setting

  • dorothee.spuhler
  • dorothee.spuhler's Avatar
    Topic Author
  • Water Engineer, Sustainable Sanitation and Water Management (SSWM) - Co-Lead of WG1 - One of the forum moderators
  • Posts: 260
  • Karma: 13
  • Likes received: 93

Tools for the generation of sanitation systems considering novel technology options and for the quantification of nutrient, water, and total solid balances at the scale of an urban setting

Dear all

I would like to inform you that within my doctoral research at Eawag/Sandec I have developed:
  1. A model that generates all possible sanitation system options from a set of potential novel and conventional sanitation technologies
  2. A model that quantifies N, P, H2O and TS l(as an indicator for energy and organic carbon soil amendment) losses and recovery rates for the sanitation systems based on material flow analysis (MFA)
  3. A procedure to systematically quantify the appropriateness of the technology options (and corresponding system options) in a given setting considering uncertainty and applicable at an early planning phase
  4. A procedure to identify a set of sanitation system options which is locally appropriate, divers, and of manageable size as an input into structured decision making frameworks such as CLUES (step 5) or Sanitation21 (step 4)
So far I did not find time and money to make a user friendly user interfaces and therefore I am not able to share a link with you. However, in case you are interested in any of these tools - please contact me by email: This email address is being protected from spambots. You need JavaScript enabled to view it.

Cheers, Dorothee

Have a look at the project webpage: www.tinyurl.com/eawag-grasp

WG1 Co-lead
Working with Sustainable Sanitation and Water Management (SSWM): www.sswm.info
Currently doing research on generating sanitation system options for urban planners and quantifying mass flows for a broad range of options considering novel technologies as an input into decision-making: www.tinyurl.com/eawag-grasp
This email address is being protected from spambots. You need JavaScript enabled to view it. / This email address is being protected from spambots. You need JavaScript enabled to view it.
The following user(s) like this post: fppirco, JKMakowka
You need to login to reply
  • goeco
  • goeco's Avatar
  • Self employed innovator with an interest in wastewater treatment systems and recycling of nutrients
  • Posts: 225
  • Karma: 7
  • Likes received: 117

Re: Tools for the generation of sanitation systems considering novel technology options and for the quantification of nutrient, water, and total solid balances at the scale of an urban setting

Hi Dorothee,
this sounds really useful.
Could you list the sanitation technologies that are currently in your model?
Are there any plans for a user interface?
cheers
Dean

Dean Satchell, M For. Sc.
Go-Eco Sustainable Solutions
www.go-eco.co.nz
You need to login to reply
  • JKMakowka
  • JKMakowka's Avatar
  • Just call me Kris :)
  • Posts: 941
  • Karma: 35
  • Likes received: 304

Re: Tools for the generation of sanitation systems considering novel technology options and for the quantification of nutrient, water, and total solid balances at the scale of an urban setting

Sounds interesting.

Can you make the models open-source?

What programming language are they written in?

Microbiologist & emergency WASH specialist
WASH news aggregator at: news.watsan.eu
You need to login to reply
  • dorothee.spuhler
  • dorothee.spuhler's Avatar
    Topic Author
  • Water Engineer, Sustainable Sanitation and Water Management (SSWM) - Co-Lead of WG1 - One of the forum moderators
  • Posts: 260
  • Karma: 13
  • Likes received: 93

Re: Tools for the generation of sanitation systems considering novel technology options and for the quantification of nutrient, water, and total solid balances at the scale of an urban setting

Dear Dean

The technologies which are currently implemented are all the once from the compendium (see ecompendium.sswm.info/sanitation-technologies ) + a few more "novel" options.
These "novel options" include among others:
  • Struvite precipitation, vermi-composting toilet (inspired by the Biofil toilet),
  • biochar production (inspired by the technology used by Sanivation in Kenya),
  • pelletizing (inspired by the LaDePa process from Kwazulu-Natal).
  • Liquid fertizlizer production from sorce-separated urine, a process developped by VUNA, a spin-off from Eawag ( www.vuna.ch/aurin/index_en.html ) .
The work is part of my PhD which I got fully funded through a scholarship and ETH/Eawag. I started to build a user interface but to make it fully functional and truly "usable" I would need some more time and money. I am currently exploring the demand (and related funding sources) for this. Please let me know if you have any hint for regarding the need and the funding of such a user interface!

Cheers, Dorothee

WG1 Co-lead
Working with Sustainable Sanitation and Water Management (SSWM): www.sswm.info
Currently doing research on generating sanitation system options for urban planners and quantifying mass flows for a broad range of options considering novel technologies as an input into decision-making: www.tinyurl.com/eawag-grasp
This email address is being protected from spambots. You need JavaScript enabled to view it. / This email address is being protected from spambots. You need JavaScript enabled to view it.
You need to login to reply
  • dorothee.spuhler
  • dorothee.spuhler's Avatar
    Topic Author
  • Water Engineer, Sustainable Sanitation and Water Management (SSWM) - Co-Lead of WG1 - One of the forum moderators
  • Posts: 260
  • Karma: 13
  • Likes received: 93

Re: Tools for the generation of sanitation systems considering novel technology options and for the quantification of nutrient, water, and total solid balances at the scale of an urban setting

Hi Kris,

All the modesl are open-source.
The model that generates all possible sanitation system options from a set of potential novel and conventional sanitation and the model technologies (SanitationSystemBuilder) and the model that quantifies the appropriateness of the technology and system options (and corresponding system options) in a given setting considering uncertainty based on a set of locally identified "appropriateness attributes" (TechAppA) are also out there on github: github.com/Eawag-SWW
The first is written in Julia, but can be used by any kind of open-source editor on windows, linus or osx (e.g. I use Atom).
The second one is written in R and can be used e.g. with RStudio.

The corresponding publication to cite is here: doi.org/10.1016/j.watres.2018.08.021
There is also a presentation from the WEDC conference but not sure if the slides as stand alone are very useful: www.dropbox.com/s/sfhf9sgluipclra/201807...ction_final.pdf?dl=0

As mentioned earlier, there is not user interface and therefor the usage is not user friendly at all. In case you intend to use the models I am happy to provide personal support - just drop me an email!

The full procedure that uses the models as an input into CLUES/Sanitaiton21 is not yet published. Also the massflow model is not yet public on github because I am still testing it and improving it a little bit. I plan to finalize it by October.
I will post any updates here.

Dorothee

WG1 Co-lead
Working with Sustainable Sanitation and Water Management (SSWM): www.sswm.info
Currently doing research on generating sanitation system options for urban planners and quantifying mass flows for a broad range of options considering novel technologies as an input into decision-making: www.tinyurl.com/eawag-grasp
This email address is being protected from spambots. You need JavaScript enabled to view it. / This email address is being protected from spambots. You need JavaScript enabled to view it.
You need to login to reply
  • dorothee.spuhler
  • dorothee.spuhler's Avatar
    Topic Author
  • Water Engineer, Sustainable Sanitation and Water Management (SSWM) - Co-Lead of WG1 - One of the forum moderators
  • Posts: 260
  • Karma: 13
  • Likes received: 93

Re: Tools for the generation of sanitation systems considering novel technology options and for the quantification of nutrient, water, and total solid balances at the scale of an urban setting

Dear all
The publication I mentioned in my previous post "Generation of sanitation system options for urban planning considering novel technologies" can be accessed freely for the next month:
authors.elsevier.com/a/1XbyY9pi-IGzp

Cheers, Dorothee

Generation of sanitation system options for urban planning considering novel technologies.
Spuhler D., Scheidegger A., Maurer M.
The identification of appropriate sanitation systems is particularly challenging in developing urban areas where local needs are not met by conventional solutions. While structured decision-making frameworks such as Community-Led Urban Environmental Sanitation (CLUES) can help facilitate this process, they require a set of sanitation system options as input. Given the large number of possible combinations of sanitation technologies, the generation of a good set of sanitation system options is far from trivial. This paper presents a procedure for generating a set of locally appropriate sanitation system options, which can then be used in a structured decision-making process. The systematic and partly automated procedure was designed (i) to enhance the reproducibility of option generation; (ii) to consider all types of conventional and novel technologies; (iii) to provide a set of sanitation systems that is technologically diverse; and (iv) to formally account for uncertainties linked to technology specifications and local conditions. We applied the procedure to an emerging small town in Nepal. We assessed the appropriateness of 40 technologies and generated 17,955 appropriate system options. These were classified into 16 system templates including on-site, urine-diverting, biogas, and blackwater templates. From these, a subset of 36 most appropriate sanitation system options were selected, which included both conventional and novel options. We performed a sensitivity analysis to evaluate the impact of different elements on the diversity and appropriateness of the set of selected sanitation system options. We found that the use of system templates is most important, followed by the use of a weighted multiplicative aggregation function to quantify local appropriateness. We also show that the optimal size of the set of selected sanitation system options is equal to or slightly greater than the number of system templates. As novel technologies are developed and added to the already large portfolio of technology options, the procedure presented in this work may become an essential tool for generating and exploring appropriate sanitation system options.


WG1 Co-lead
Working with Sustainable Sanitation and Water Management (SSWM): www.sswm.info
Currently doing research on generating sanitation system options for urban planners and quantifying mass flows for a broad range of options considering novel technologies as an input into decision-making: www.tinyurl.com/eawag-grasp
This email address is being protected from spambots. You need JavaScript enabled to view it. / This email address is being protected from spambots. You need JavaScript enabled to view it.
You need to login to reply
  • Carol McCreary
  • Carol McCreary's Avatar
  • I'm Program Manager at PHLUSH (Public Hygiene Lets Us Stay Human) www.phlush.org
  • Posts: 166
  • Karma: 9
  • Likes received: 106

Re: Tools for the generation of sanitation systems considering novel technology options and for the quantification of nutrient, water, and total solid balances at the scale of an urban setting

Dorothee,

Your recent paper made available free is cool! Very sobering that for one place in Nepal you assessed the appropriateness of 40 technologies and generated 17,955 appropriate system options. Ah ha! That shows how complex all this is and the need for tools like the ones you offer.

Do you have examples from industrialized countries, where options are fewer? Many rural and suburban areas of the US are confronted with failing onsite septic systems and the inability of cities to maintain or replace sewers is also well documented. I see the options as far fewer owing to a rigid regulatory environment, escalating costs to individual homeowners and local governments, the difficulty of getting the policy discussion underway when a way forward seems lacking.

Any suggestions?

Here are a couple of overviews of the situation in the US problems that are helpful to generalists advocates :
Thank you for your work,

Carol

Carol McCreary
Public Hygiene Lets Us Stay Human (PHLUSH)
1240 W. Sims Way #59, Port Townsend, Washington 98368 USA

Toilet availability is a human right and well-designed sanitation systems restore health to our cities, our waters and our soils.
You need to login to reply
  • dorothee.spuhler
  • dorothee.spuhler's Avatar
    Topic Author
  • Water Engineer, Sustainable Sanitation and Water Management (SSWM) - Co-Lead of WG1 - One of the forum moderators
  • Posts: 260
  • Karma: 13
  • Likes received: 93

Re: Tools for the generation of sanitation systems considering novel technology options and for the quantification of nutrient, water, and total solid balances at the scale of an urban setting

Dear Carol

Thank you for your interest.
You pinpoint a very important message of the paper: the process of selecting the "right" sanitation technology options is very complex and cannot be oversimplified.
You also mention a other important aspect: legal criteria, environmental conditions, flexibility, etc can be used to narrow down the option space. However, it is not alway so clear how "fixed" these factors are: maybe these laws could be changed in order to allow for a technology or sanitation system options which has many advantages regarding many other criteria!?! (We have seen this example here in Switzerland for the procedure used by the VUNA team, a Eawag spin-off producing liquid fertilizer from urine).

I do not have a ready made example from an industrialized country but what I can say from the research which I have done with this model so far is that it remains always somehow complex and a fancy model will not do the job alone! It has to be part of a collaborative, structured, and facilitated planning process following the framework of e.g. CLUES.

I see two main added values of models like mine:
  • The process of pre-selection is systematized and therefore made reproducible and more transparent (also stakeholders can be involved in defining and quantifying pre-selection criteria as mentioned above).
  • The process of system generation is automatized and therefore allows to consider a very large and divers number of different technological concepts.
The output is not the "one single best option" but a divers and locally appropriate set of sanitation system options that is still of manageable size and can support the discussions and the decision-making process among stakeholders and decision makers.

Cheers, Dorothee

WG1 Co-lead
Working with Sustainable Sanitation and Water Management (SSWM): www.sswm.info
Currently doing research on generating sanitation system options for urban planners and quantifying mass flows for a broad range of options considering novel technologies as an input into decision-making: www.tinyurl.com/eawag-grasp
This email address is being protected from spambots. You need JavaScript enabled to view it. / This email address is being protected from spambots. You need JavaScript enabled to view it.
The following user(s) like this post: Carol McCreary
You need to login to reply
Share this thread:
Recently active users. Who else has been active?
Time to create page: 1.056 seconds