Vortex bioreactors for the processing of contaminated wastewater (Plymouth Marine Laboratory, UK)
(1 viewing) (1) Guest
  • Page:
  • 1

TOPIC: Vortex bioreactors for the processing of contaminated wastewater (Plymouth Marine Laboratory, UK)

Vortex bioreactors for the processing of contaminated wastewater (Plymouth Marine Laboratory, UK) 15 Apr 2013 17:04 #4152

  • mikeallen
  • CONTACT
  • I'm a marine biologist by trade and a molecular biologist by training. I specialise in algal virology, in particular the giant viruses that infect E. huxleyi. I'm also interested in technology development and bioprocessing using vortex reactors and PBRs
  • Posts: 6
  • Likes received: 2
  • Karma: 2
Dear all,
I would like to introduce to you a research grant with funding from the Bill & Melinda Gates Foundation which I am leading. It’s been a very exciting grant to work on and the results have been very promising. Initially, we were developing this technology for the production of biofuels from microalgae (and still are). This is where our expertise lies (I work at Plymouth Marine Laboratory), however we obtained funding from BMGF to develop the technology for water disinfection. We have proved the principle, but really need your help to take it to the next stage. We are currently applying for Phase 2 funding (in the next two weeks) and are looking for partners to field test our technology. Take a look at the information below and if you’re interested, please drop me an email ( This e-mail address is being protected from spambots. You need JavaScript enabled to view it ).

Looking forward to working with you
Mike

Title of grant: Manually-driven decentralized Vortex bioreactors for the processing of (faecal sludge and) wastewater
Subtitle (more descriptive title): Manually-driven decentralized Vortex bioreactors for the processing of secondary effluent. Our idea is to engineer low-cost, small foot-print, hand/bicycle/motor-driven vortex bioreactors which can completely sterilize pathogen contaminated water in 2-3 minutes. To our knowledge, there is no scalable device in the world today that can generate microbe-free water so rapidly and so reliably with minimal energy input.

Name of lead organization: Plymouth Marine Laboratory
Primary contact at lead organization: Mike Allen
Grantee location: Plymouth, United Kingdom
Developing country where the research is being tested: We are currently looking for partners/collaborators/stakeholders/any interested party to test the vortex bioreactor in both laboratory and field trials. See below for details of potential field deployment opportunities!

Short description of the project:
The bioreactor will find application in a wide variety of sanitation systems in a large number of countries: it is an extremely versatile tool for water sterilization. In this project, we will be focusing on testing the bioreactor as a means of treating the effluent separated from high BOD load sludge before further treatment, reuse or discharge

Goal(s):
The original goal of this project was to develop a low-cost, manually-driven vortex bioreactor which reduces the total viable count of faecal contaminated waste water through the intense mixing and subsequent separation of the wastewater into liquid and solids. WE HAVE CHANGED THIS GOAL TO FOCUS ON THE DISINFECTION OF SECONDARY EFFLUENT (LIQUID ONLY), BECAUSE THIS SEEMS TODAY THE SINGLE MOST IMPORTANT APPLICATION. Vortex separation systems are common within the sanitation industry to physically separate wastewater into distinct output streams which have the same biological and chemical properties than before.
WIDERPLACE.jpg



The vortex bioreactor is subtly, but crucially different: the focus is not on separation, but on exploiting the intense mixing zone produced within a vortex. By bringing a destructive agent (we’ve been using a fully recyclable copper-alginate bead, which destroys the bacteria through the ‘oligodynamic effect’, most likely redox stress) into intense contact with the microbial fraction, we can disinfect the water. The simple design of the vortex bioreactor is completely scalable and can just as easily deal with a few liters of water a day (single toilet), to tens of thousands of gallons a minute (municipal). Hand/bicycle driven vortex bioreactors are cheap to construct, can efficiently disinfect contaminated water, and are highly versatile. With just one moving part, a simple design and the potential to utilize local materials, the vortex bioreactor is a scalable solution to high throughout water processing. Any sanitation or treatment system that currently produces high BOD water can potentially use the vortex bioreactor as a low capital and operation expenditure alternative to UV sterilization. Crucially, there is unlikely to be a reduction in performance under high turbidity (we will be testing this in phase 2).

Vortex bioreactor prototypes

REACTOR1.jpg


REACTOR2.jpg


REACTOR3.jpg


Methods:
Built scaled-down, desktop, closed loop vortex bioreactor with a working volume of 7 litres and 5% solids, E. coli counts were reduced by utilizing a fully recyclable copper-alginate bead. The reactor was powered by means of a simple electric drill at setting 3 of a possible 15 speeds (1 lowest, 15 maximum) and a standard 5 blade model boat impeller.

Preliminary Results (Phase I):
We have various prototype devices. A pilot-scale device has been developed that can reduce viable counts in microbial contaminated water. So far E. coli counts were reduced from 99.85% within 10 minutes (106 per ml, i.e. nearly 1010cells in total, to zero within 15 minutes; 99.85% were destroyed within 10 minutes). The lead lytic agent, copper-alginate, is also fully recyclable and has shown negligible loss of activity and/or degradation through repeated process cycles.
To date, the mixing kinetics to achieve maximum kill rates have not been optimized (only one speed and one impeller design were selected for initial testing and base line data generation). Under optimised conditions, disinfection performance is expected to be higher. However, the relatively slow speed of rotation used suggests that the construction of a manually driven device for small scale processing is perfectly feasible.

RESULTS1.jpg


results2.jpg


Outlook (Phase 2)
We will be looking to improve on our existing 4-log reduction in 5 minutes to, ideally, a 4-log reduction in less than 1 minute. Nothing is yet optimized: we still have the impeller, speed, tube and bead composition to improve upon. We will also be investigating the use of alternative, cheaper materials instead of copper as the active agent (such as local metal ores), as well as alginate extracted from locally sourced seaweed. Once we’ve determined the optimum speed of rotation, we can develop hand and leg powered systems (depending on the volumes involved) with the appropriate gear boxes (such as a modified bicycle or a hand cranked drill) for efficient turning.

Main field of application/target audience: We are looking to help anyone with contaminated water, at any scale, but our greatest impact will mostly likely be working within a DEWATS system setting.

Start and end date: November 2011 to April 31st, 2013
Grant type: Grand Challenges Explorations, Round 7 (GCE R7)

Funding for this research currently ongoing: BMGF Phase 1 and Phase 1 Extension. This technology is also being developed for biofuel production, through funding from the UK’s Technology Strategy Board.

Research or implementation partners: The technology is being developed with partners Protein Technology Ltd, as well as with chemical engineering support from the Bouygues Group and fluidic engineering support from University College London.

Current state of affairs:
TRL5, looking for Phase 2 funding to get it to TRL9.
WE NEED PARTNERS TO FIELD AND LABORATORY TEST THE VORTEX BIOREACTOR IN REAL WORLD SITUATIONS/ENVIRONMENTS. It’s easy to use, low energy, and the reactors we have built are modular in design to allow easy future development following feedback. Ideally we would like to test the prototype in the following environments: small scale waste water treatment plants, individual toilet systems, and contaminated ground water settings such as drinking wells. Once we know how big your pipe/reservoir is and the flow rate, we can adapt our units to your requirements. Any modified components can be sent out in the post and retrofitted easily, and standard operating procedures updated via email.

So far, if we get Phase 2 funding, we’ll be providing vortex bioreactors to:
  • Karl Linden, University of Colorado Boulder for UV comparison.
  • Steve Sugden of Water for People will deploy the vortex bioreactor in Malawi and Uganda.
  • Bincy Baby of Eram Scientific Solutions will utilize the vortex bioreactor in the field in Kerala, India.
  • Chris Buckley and the team at University of KwaZulu-Natal will help develop the helminth binding add-on module to the vortex bioreactor.

To save on operators arms, we’ll be running the smaller units with electric drills or suitable low cost motors.
IF YOU CAN THINK OF AN APPLICATION, OR THIS CAN BE BOLTED ON TO YOUR EXISTING SYSTEM, OR YOU CAN OFFER ANY ASSISTANCE IN ITS DEVELOPMENT, PLEASE JOIN OUR TEAM!

Biggest successes so far:
The vortex bioreactor is great for microbial destruction. We’ve had a lot of interest in the technology, which is viewed by many as a true ENABLING TECHNOLOGY.
We have also received a Phase 1 extension to deal with helminth eggs.

Main challenges / frustration:
Dealing with the helminth issue, as they are quite indestructible chemically and are difficult to destroy at scale in an economical and efficient manner. We have decided not to destroy, but to SEPARATE the eggs out using either floating or sinking bead-binding materials and exploiting the separation properties of the vortex bioreactor. Results are looking promising, however the separation properties of the vortex bioreactor is antagonistic to the mixing properties (currently being applied very successfully to microbial destruction), therefore we need to tweak the system to address this. It is possible we’ll need a dual propeller system. On the plus side, the removal of helminth eggs following microbial destruction can be combined with the removal of any leached copper from the first microbial destruction step, making the discharged water even ‘cleaner’.

Links, further readings, etc:
- Project and result description on Partners in Development (PID) homepage: www.pid.co.za/index.php/abstracts2/77-vo...tment-systems-dewats
- Video clip of presentation at FSM2 in Durban (October 2012):
------------------------------------------------------------
Dr Mike Allen
Plymouth Marine Laboratory
Website: www.pml.ac.uk
Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
www.pml.ac.uk/about_us/the_pml_team/staf...tory/mike_allen.aspx
------------------------------------------------------------
Last Edit: 19 Jan 2014 21:40 by muench.
The following user(s) like this post: christoph

Re: Vortex bioreactors for the processing of contaminated wastewater 16 Apr 2013 12:16 #4160

  • christoph
  • CONTACT
  • Moderator
  • Sanitary engineer with base in Brazil and Peru, doing consultancy in other countries of LA
  • Posts: 217
  • Likes received: 81
  • Karma: 16
Hi Mike,
very interesting project. I have tons of questions but to be able to ask better, I would like to ask you to explain a bit about "a fully recyclable copper-alginate bead".
Could you link a paper on that? I never heard of such. It seems to be very interesting.
Thanks for posting.

Christoph

Re: Vortex bioreactors for the processing of contaminated wastewater 16 Apr 2013 16:14 #4162

  • mikeallen
  • CONTACT
  • I'm a marine biologist by trade and a molecular biologist by training. I specialise in algal virology, in particular the giant viruses that infect E. huxleyi. I'm also interested in technology development and bioprocessing using vortex reactors and PBRs
  • Posts: 6
  • Likes received: 2
  • Karma: 2
Hi Christoph
Thanks for your interest. OK, currently in order to immobilise our active ingredient (copper powder) we encase it in an alginate matrix. By placing it inside the alginate bead (which are about 3-4 mm across), we can recycle our copper by retaining the beads easily by either particle size retention (with a mesh) or by directing it down a separation manifold for the heavy fraction. If we wished to do so, we can even make the copper alginate beads float by adding 3M glass bubbles to the mix as we form the beads although this is a lot messier and a little trickier. When the beads float we can separate them through the light liquid manifold like the fishing tackle beads were doing in the model reactor we showcased in Seattle last year.
There are plenty of papers on making alginate beads, it’s not a new concept and its very easy. Just put “alginate bead” into google scholar. People use them for all sorts or purposes. We originally became aware of the technique because we were encapsulating single cells inside them, they are a great way of growing mixed microbial communities in the same pot, whilst keeping the different types of bacteria physically separate.

Cheers
Mike

Here are some pictures of coloured beads that we made of various densities to track the fluid dynamics within the system (coloured with food dye from Tescos) and of our copper beads we use to kill the bugs.

beads1.jpg


beads2.jpg
------------------------------------------------------------
Dr Mike Allen
Plymouth Marine Laboratory
Website: www.pml.ac.uk
Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
www.pml.ac.uk/about_us/the_pml_team/staf...tory/mike_allen.aspx
------------------------------------------------------------

Re: Vortex bioreactors for the processing of contaminated wastewater 17 Apr 2013 11:52 #4171

  • christoph
  • CONTACT
  • Moderator
  • Sanitary engineer with base in Brazil and Peru, doing consultancy in other countries of LA
  • Posts: 217
  • Likes received: 81
  • Karma: 16
Dear Mike,
thanks for the answer, the alginate beads are more or less as I imagined. I am very interested for the disinfection of regular wastewater, therefore my questions:
1) You do need 3-5 min for reaction (currently). I would do a mixing tank instead of a vortex reactor. Should it not be enough? Just to guarantee very good mixing? I´m thinking of up to 2 l/s, that makes a reactor of 360 – 600 l. Is there another reason for the Vortex mixing?
2) The alginate beads are more or less as sagoo (a Brazilian sweet ) are they sufficiently stable to abrasion? I would imagine that the lifetime is quite short. In this case…don´t I release copper to the effluent?
3) How many of the alginate beads I do need / l,s or whatever measure
I am trying to imagine how many beads I do have to have, how difficult it would be to bring those back after separation (which I think is an issue), how many I do have to replace each day.
Maybe it is just a solution for very low volume with a very high pollution. Up to 50 kg/m³ is a lot of solid. Are you sure about 5%? It would be as if you use a very, very dense sludge after a thickener. Separation in this material is quite more difficult I guess.
Dealing with sludge helminth eggs would definitely the most important issue. Dealing with wastewater is more the coliforms..therefore my questions towards wastewater.

Thanks in advance ..and if you are not able to answer everything ..as you are right now researching…no problem I was “dreaming” of a substitute for my chlorination I put in in the small wastewater plants.. I can keep on dreaming a bit .
Yours
Christoph

Re: Vortex bioreactors for the processing of contaminated wastewater 18 Apr 2013 08:17 #4181

  • mikeallen
  • CONTACT
  • I'm a marine biologist by trade and a molecular biologist by training. I specialise in algal virology, in particular the giant viruses that infect E. huxleyi. I'm also interested in technology development and bioprocessing using vortex reactors and PBRs
  • Posts: 6
  • Likes received: 2
  • Karma: 2
Hi Christoph
Thanks for your continued interest, clearly you have seen the potential of the vortex bioreactor. It would be a pleasure to provide you with a unit to test should our phase 2 application get funded. Can you email me on This e-mail address is being protected from spambots. You need JavaScript enabled to view it with your contact details and a few lines on where and what you'll want to connect it to?
In response to your queries….
1. It’s all about contact. A mixing tank is fine, but the vortex reactor brings about intense and efficient mixing which is why it is quick and effective. With a holding/mixing tank it’ll take longer. Which is absolutely fine, but is a different technology niche. Our collaborators on the vortex reactor technology are also developing this type of product (1 tonne scale). I can send you details if you’re interested.
2. Wow, I had no idea we had based our beads on sweets. I suppose the coloured ones did look a bit like skittles…. When we turn up the speed the beads do suffer from some damage. However at the lower speeds that we have been running the vortex reactor at, we have seen no degradation. They don’t actually make contact with the propeller, they just glide by it. So it is not as damaging or abrasive as you would think. Nevertheless, we have updated the design of the system to have the bead return manifold just after the propeller and directly feeding into the mixing zone. So they should never ever come in to contact with the propeller. There is minor leaching of the copper into the effluent, but it is very low at the moment. We don’t use that much copper in the first place (see below). We also have another compound which we can put in which will soak it up as an additional processing step.
3. Not many at all, we used about 50 g of beads per litre, which are 4% copper. So there’s about 2 g of copper per litre in total. They are easy to separate and retain, and won’t need replacing or topping up for months I imagine. But we need to do field tests to confirm this.
4. We’ve used it up to 20% solids using insoluble starch. Increasing the solids will of course make the intense contact more difficult and require more energy. We’re not looking to treat sludge though, just contaminated water.
5. You’re the second person to contact me in the last few days about replacing chlorination systems in waste water plants. I think there is a definite application there for this technology. You need a reactor to test!!

Cheers
Mike
------------------------------------------------------------
Dr Mike Allen
Plymouth Marine Laboratory
Website: www.pml.ac.uk
Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
www.pml.ac.uk/about_us/the_pml_team/staf...tory/mike_allen.aspx
------------------------------------------------------------

Re: Vortex bioreactors for the processing of contaminated wastewater 04 Dec 2013 17:03 #6615

  • mikeallen
  • CONTACT
  • I'm a marine biologist by trade and a molecular biologist by training. I specialise in algal virology, in particular the giant viruses that infect E. huxleyi. I'm also interested in technology development and bioprocessing using vortex reactors and PBRs
  • Posts: 6
  • Likes received: 2
  • Karma: 2
Hi Everyone

Thought I'd give a quick update of where we are currently at. The good news is that we have managed to secure Phase 2 funding. We are currently progressing two objectives:
1. Deployment of the vortex bioreactor in the field. (ETA late Jan/Feb)
2. Publication of the current results.
This current Phase 2 project is a much shortened project than originally envisaged, and will only last 12 months. Basically, the vortex bioreactor will be going to 4 designated BMGF partners and will hopefully provide the proof of principle data we need to secure the next phase of funding. Nothing will change with the existing setup in the next 12 months, we will be concentrating on consolidating what we've got already and proving it can work in the real world. Although we know the propeller, the beads and system design will all require significant modification in the future, this will have to wait until after we have shown it can work in its current format.

Exciting times ahead. I'll keep you all updated as things progress.....
Cheers
Mike
------------------------------------------------------------
Dr Mike Allen
Plymouth Marine Laboratory
Website: www.pml.ac.uk
Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
www.pml.ac.uk/about_us/the_pml_team/staf...tory/mike_allen.aspx
------------------------------------------------------------
The following user(s) like this post: jankn

Re: Vortex bioreactors for the processing of contaminated wastewater 08 Jan 2014 17:13 #6923

  • mtfioravanti
  • CONTACT
  • Researcher and advisor in Sustainable Development, Environmental education, Eco-efficiency, Sustainable Sanitation.
  • Posts: 19
  • Likes received: 1
  • Karma: 0
Congratulations Mike! Share progress news!
Marcos Fioravanti B.
Taladro de la Tierra Project
Fundación In Terris / Critical Practices LLC

This e-mail address is being protected from spambots. You need JavaScript enabled to view it
+593994492690
Skype: tomasini23

Re: Vortex bioreactors for the processing of contaminated wastewater (Plymouth Marine Laboratory, UK) 21 Jan 2014 00:14 #7071

  • gitum
  • CONTACT
  • Environmental Engineer pursuing PhD at Technical University of Munich
  • Posts: 18
  • Likes received: 4
  • Karma: 2
Dear Mike,

I have seen in your post from 15 April that you have received the Phase 1 extension to deal with the helminth eggs. Could you please share some results that you received by now? Also, you wrote that you separate the eggs from the waste water. I am curious if there will be any additional method to destroy the eggs after you separate them. I think burning them could be a good solution in order to prevent contact.

You had written:

Main challenges / frustration: Dealing with the helminth issue, as they are quite indestructible chemically and are difficult to destroy at scale in an economical and efficient manner. We have decided not to destroy, but to SEPARATE the eggs out using either floating or sinking bead-binding materials and exploiting the separation properties of the vortex bioreactor. Results are looking promising, however the separation properties of the vortex bioreactor is antagonistic to the mixing properties (currently being applied very successfully to microbial destruction), therefore we need to tweak the system to address this. It is possible we’ll need a dual propeller system.


In terms of places to test your reactors in the field, you had also written on 15 April:

if we get Phase 2 funding, we’ll be providing vortex bioreactors to:
• Karl Linden, University of Colorado Boulder for UV comparison.
• Steve Sugden of Water for People will deploy the vortex bioreactor in Malawi and Uganda.
• Bincy Baby of Eram Scientific Solutions will utilize the vortex bioreactor in the field in Kerala, India.
• Chris Buckley and the team at University of KwaZulu-Natal will help develop the helminth binding add-on module to the vortex bioreactor.


Is this still the current plan? Could you tell us a bit more what will actually be involved, e.g. what will be the scale, type of waste or wastewater and type of pre-treatment system which you will use (as I imagine your beads could not possibly deal with things like toilet paper, rags, pieces of plastic, food chunks etc.)?

Thanks a lot.

Regards,

Gökce
M.Sc. Gökce Iyicil
Research Assistant
Technical University of Munich
e-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
www.tum-ias.de
www.sww.bv.tum.de
Last Edit: 21 Jan 2014 09:44 by muench.

Re: Vortex bioreactors for the processing of contaminated wastewater (Plymouth Marine Laboratory, UK) 27 Jan 2014 11:16 #7126

  • mikeallen
  • CONTACT
  • I'm a marine biologist by trade and a molecular biologist by training. I specialise in algal virology, in particular the giant viruses that infect E. huxleyi. I'm also interested in technology development and bioprocessing using vortex reactors and PBRs
  • Posts: 6
  • Likes received: 2
  • Karma: 2
Hi Gökce

Thanks for your interest. I think burning will be the best way . The volumes involved will be very very small so it should be very easy. We're still looking for a suitable bead chemistry to bind the eggs, but I'm confident we'll be able to find something fit for purpose.

With regards to the testing partners, yes that is still the plan. We should be sending out next week hopefully. We're working on the instruction video and manual this week, so we're getting very close. The partners will be trialling the very basic vortex bioreactor model, which takes about 8 litres of water and works in batch mode. We know this isn't going to be the final design, but its important we prove this can work in this format before we go changing and optimising the system. Our partners will be putting secondary effluent through, so there shouldn't be any detritus in the system (or at least not much!). The issue with having chunks of material in there is more to do with recycling the beads at the moment, I don't think it would have too much effect on its actual anti- microbiological activity. Vortex separators are commonly used in the waste water industry and they don't tend to clog. We'll know more when we get the data back......
Cheers
Mike
------------------------------------------------------------
Dr Mike Allen
Plymouth Marine Laboratory
Website: www.pml.ac.uk
Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
www.pml.ac.uk/about_us/the_pml_team/staf...tory/mike_allen.aspx
------------------------------------------------------------
Last Edit: 27 Jan 2014 11:16 by mikeallen. Reason: wrong layout

Re: Vortex bioreactors for the processing of contaminated wastewater (Plymouth Marine Laboratory, UK) 12 Feb 2014 09:22 #7348

  • mikeallen
  • CONTACT
  • I'm a marine biologist by trade and a molecular biologist by training. I specialise in algal virology, in particular the giant viruses that infect E. huxleyi. I'm also interested in technology development and bioprocessing using vortex reactors and PBRs
  • Posts: 6
  • Likes received: 2
  • Karma: 2
Prototype vortex bioreactors (and suitcases) nearly ready to send off to BMGF partners.......


------------------------------------------------------------
Dr Mike Allen
Plymouth Marine Laboratory
Website: www.pml.ac.uk
Email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
www.pml.ac.uk/about_us/the_pml_team/staf...tory/mike_allen.aspx
------------------------------------------------------------
  • Page:
  • 1
Time to create page: 0.74 seconds